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Abstract

Generic expert systems are reasoning systems that can be used in
many application domains, thus requiring application domain indepen-
dence. The user interface for a generic expert system must contain an
intelligence in order to maintain this domain independence and manage
the complex interactions between the user and generic expert system.
This paper explores the uncertainty-based reasoning contained in an in-
telligent user interface called GESIA. GESIA’s interface architecture and
dynamically constructed Bayesian network are examined in detail to show
how uncertainty- based reasoning enhances the capabilities of this generic
expert system user interface.

1 Introduction

As generic expert systems begin to make their way into mainstream applications,
research must be conducted to handle the generic system’s special challenges.
The greatest of all the challenges for these generic systems is maintaining ap-
plication domain independence (keeping the system generic) and ensuring sys-
tem performance is not linked to a specific application domain. This challenge
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centers on the system’s interaction with the application domain, namely the
system’s user, so becomes the primary focus of the system’s user interface.

The user interface for a generic expert system must offer more than just a
pleasing, easy to use work environment. The user interface must manage the
multitude of tasks required to maintain the system’s application domain inde-
pendence as well as facilitate communication between the user and the system
[9] [8]. These tasks include recognizing the system’s application domain and
user, suggesting user implemented adaptations to the interface, and adapting
the interface adaptively to meet the specific domain and user’s needs [7].

In order for a user interface to perform these various management tasks, it
must contain an aspect of intelligence, or reasoning capability [2], that enables
it to act as an intelligent assistant to the user. This is the idea behind the intel-
ligent user interface GESIA (Generic Expert System Intelligent Assistant) for
the generic expert system PESKI (Probabilities, Expert Systems, Knowledge,
and Inference) [1] at the Air Force Institute of Technology. This paper discusses
the basic interface architecture and dynamically constructed Bayesian network
for GESIA, focusing on the use of uncertainty-based reasoning to maintain the
application domain independence of the expert system.

2 Interface Reasoning Needs

In order for a user interface to perform as an intelligent assistant it must have
the ability to reason. This reasoning capability is enabled by the following:
collecting metrics, transitioning metrics into information, storing information,
and inferencing over the stored information. These actions work hand in hand
to provide an environment from which the user interface can make intelligent
decisions.

The first step in creating this reasoning environment within the interface
is to collect metrics based on the operations being performed on the expert
system. These metrics are called interface domain metrics. Interface domain
metrics can be just about any type of data that a user interface can collect
from the application domain or the user. These include keystrokes, procedures
used to perform tasks, user preferences, and tasks most often performed. The
number and type of interface domain metrics collected is solely based on knowl-
edge required for user interface reasoning. Information about the application
domain can be acquired from a single interface domain metric or combinations
of different types of metrics.

The collected interface domain metrics then needs to be transformed into
some meaningful information. The information format must be based on one
that the user interface requires for making decisions at a later time. This step
suggests an intermediate reasoning step that develops a meaning for the met-
ric collected. This intermediate step is contained in a knowledge based trans-
formation algorithm that is used by the interface to convert the metric into




information.

Once the interface domain metric has been transformed, the information
must be stored. The storage medium, usually a knowledge base, facilitates the
reasoning process when the interface requires knowledge. An uncertainty-based
scheme is a good choice for this task since it allows for efficient and affective
reasoning.

When the user interface needs to make a decision, the interface will need
to draw upon the knowledge stored in the knowledge base. The architectural
scheme of the knowledge base will determine how intelligent and dynamic the
decisions are as well as how efficient the reasoning is in terms of processing
resources.

3 The Intelligent User Interface GESIA

GESIA has a layered architecture that contains three main layers: the graphical
layer, the system layer, and the intelligent assistant layer (see Figure 1). The
graphical layer provides the graphical interface environment, or cosmetics, for
the interface, while the system layer provides a coupling between the expert
system’s tools and the user interface. The intelligent assistant layer is the main
focus of this research.

The intelligent assistant layer has a layered architecture as well. Its lay-
ers include an adaptation layer, an adaptive layer, and communications layer.
The adaptation layer recognizes particular adaptations that can be made to
customize the interface to specific application domains and users [5]. The rec-
ognized adaptations are then offered to the user, and the user interface provides
help in making the adaptations if the user so desires. On the other hand, the
adaptive layer actually makes changes to the user interface without interaction
or decision from the user [12]. The adaptive layer makes these changes based
on perceived user behavior in a manner that will be explained later in this pa-
per. The communications layer provides the methods to collect and translate
interactions between the user and the expert system. Together, these three
layers use reasoning to control adaptations, maintain application domain inde-
pendence of the expert system, and assist the user with utilizing the expert
system’s functionality.

4 Intelligent Interface Reasoning

The basic model for representing GESIA’s knowledge is a Bayesian network
[6] [10] [3] [4]. User behavior is not deterministic, so representing user behav-
jor in an uncertainty-based architecture is appropriate. This representation has
the ability to portray a large amount of information based on the collection of
only a small number of interface domain metrics, making this representation
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Figure 1: The GESIA architecture

important for interface reasoning efficiency. There are three types of nodes in
GESIA’s Bayesian network, interface learning nodes(ILNs), interface informa-
tion nodes(IINs), and uncertainty support nodes(USNs). This section describes
each node in the Bayesian network, and a later section will give a concrete
example of how the network is used.

Interface learning nodes are used by GESIA to integrate and store the mean-
ing of collected interface domain metrics into the Bayesian network. These nodes
not only hold a specific semantic meaning but also have a set of probabilistic
values attached to the meaning. The actual structure of these nodes consists of
a node-unique update algorithm and a table of probabilities. The node-unique
update algorithm at each node is specially designed to alter node probabilities
based on the type and use of the metric received. The table of probabilities
holds an entry for every user of the system plus an entry for each of the four
basic user types: application user, application expert, knowledge engineer, and
computer scientist. The specific semantics of each interface learning node com-
bined with its probabilistic values allows the interface learning node to represent
degrees of uncertainty in the learned information.

The interface information nodes represent the many states of the world
within GESIA. These nodes feed off interface learning nodes, uncertainty sup-
port nodes, and other interface information nodes to determine probabilistic




values for the states they represent. While the interface learning nodes are
the primary gateway for which learning enters the network, interface informa-
tion nodes represent the application of the networks learned knowledge. User
interface elicitation of knowledge targets the states represented by the inter-
face information nodes, allowing the user interface to make intelligent decisions
concerning potential adaptations.

Finally, the uncertainty support nodes store information concerning the un-
certainty that the user interface will make a correct decision about a particular
interface information node (system state). The structure of these nodes is much
like the structure of the interface learning nodes, and there exists exactly one
uncertainty support node for each and every interface information node. The
probabilities stored in each of these nodes represents all the instances when the
interface is wrong about inferencing over the interface information node it sup-
ports. This uncertainty is applied to its parent interface information node to
alter its parents probability when its parent is targeted for knowledge elicitation
by the user interface. In this way, the user interface decisions of the future will
be affected by its incorrect inferences of the past.

5 GESIA Metrics and Nodes

GESIA employs the minimum set of interface domain metrics necessary to assist
the user with employing expert system functions while maintaining the appli-
cation domain independence of the expert system. Figure 2 displays a chart
of the interface domain metrics, interface learning nodes, uncertainty support
nodes, and interface information nodes GESIA supports. All of GESIA’s inter-
face domain metrics, interface learning nodes, uncertainty support nodes, and
interface information nodes fall within one of three general classifications based
on the information collected: functional execution, communication modes, and
output styles. Together, these classifications of information provide GESIA with
a considerable amount of knowledge about the outside world.

The metrics and nodes used to support the functional execution classification
are used to collect, learn, and use information to answer the question "What
functionality of the expert system will this user most likely use?” Every time
one of the main expert system functions (knowledge acquisition, knowledge ex-
traction, and knowledge base viewing) is executed, an interface domain metric
is instantiated which represents that execution. This metric is sent to the ap-
propriate functional execution classification learning node and is applied to each
learning node’s probability that is associated with the current user. Using each
node’s individual update algorithm, a new probability is produced and stored
in the node’s user table for the current user. Later, when the interface needs
to question a functional execution interface information node, the probabilities
of the subordinate interface learning nodes and interface information nodes are
applied. The resulting probability is used by the user interface to answer the




Interface Domain Metrics Interface Learning Nodes Interface Information Nodes
Functional Execution Functional Execution Functional Execution
Knowledge Aquisition Used | User’s Class Prefers Knowledge Aquisition | Using Knowledge Aquisition
Knowledge Extraction Used | User’s Class Prefers Knowledge Extraction | Using Knowledge Extraction
Knowledge Viewing Used | User’s Class Prefers Knowledge Viewing Using Knowledge Viewing
User Prefers Knowledge Aquisition
User Prefers Knowledge Extraction
User Prefers Knowledge Viewing
Communication Modes | Communication Modes Communication Modes
Structured Text Used User's Class Prefers Structured Text Using Structured Text
Natural Language Used User's Class Prefers Natural Language Using Natural Language
Graphical Manipulation Used | User’s Class Prefers Graphical Manipulation | Using Graphical Manipulation
User Prefers Structured Text
User Prefers Natural Language
User Prefers Graphical Manipulation
Output Styles Output Styles Output Styles
Best Response Requested User’s Class Prefers Best Response Receiving Best Response
Best 5 Responses Requested | User’s Class Prefers Best 5 Responses Receiving 5 Best Responses
Best 10 Responses Requested | User’s Class Prefers Best 10 Responses Receiving 10 Best Responses

User Prefers Best Response
User Prefers Best 5 Responses
User Prefers Best 10 Responses

Figure 2: A table of GESIA metrics and nodes




question.

The information collected for the functional execution classification are used
by the interface for two purposes. First, the information allows the interface
to perform interface initiated abstraction of seldom used functions. Second,
the functional execution information supports decisions for the communication
modes classification.

The metrics and nodes used to support the communication modes classifi-
cation are used to collect, learn, and use information to answer the question
"What type of communication does this user prefer when utilizing the powers
of the expert system?” The interface domain metric is collected each time a
communication mode (natural language, structured text, or graphical manipu-
lation) of the interface is used to perform an expert system task. This metric
must be collected each time a communication mode is activated to translate
between the user and the expert system and is processed much like the func-
tional execution metrics. An example of the use for this information is if the
user has a high probability of using a particular communication mode and the
user starts an expert system function, the interface can automatically bring up
that communication mode. If the probabilities are close between two modes,
the system initiates a query to the user asking which mode the user wants. In
this way, the user is assisted by the user interface in choosing a communication
mode for a given expert system function.

The metrics and nodes used to support the output styles classification are
used to collect, learn, and use information to answer the question "How many
of the best matches from a query will this user prefer?” The interface domain
metric is collected by obtaining how many outputs the user requests, or how
many outputs the user accepts if a reasoned number of outputs is returned by
the interface. Again, this metric is processed much like the function execution
metrics. The output styles information is especially useful when the user fails
to specify what style of output is required for a specific execution of an expert
system query. As with the communication modes, if the user interface finds
probabilistic tendencies toward a particular output style, the user interface will
automatically return the most probable desired output style. If the probabilities
are close, the user interface will query the user for clarification.

The interface domain metrics, interface learning nodes, uncertainty support
nodes, and interface information nodes are combined to dynamically construct
a Bayesian network (see Figure 3). This network represents the knowledge that
the user interface collects dynamically, as the user utilizes the expert system.

As previously mentioned, the interface learning nodes (shown in regular
ovals, Figure 3) occupy the fringe of the structure and offer a means to input
newly learned information into the network. These interface learning nodes lend
dependencies to corresponding interface information nodes (shown in bold ovals,
Figure 3), creating new probabilities for the interface information nodes. These
new probabilities are supplemented by uncertainty stored in the uncertainty
support nodes (shown in squares labeled USN, Figure 3). These USNs abstractly




User's Class User Prefers

User's Class User Prefers
Prefers Best Best Response Prefers Best 5 Bewt§
Response Responses Responses
iving »
UsN Bex e G
Response
User's Qass
Prefers Namnal
Language
Using Natura fleJ:: sClass ‘Uling
Lasguge Teat Text
USN
USN
User
Prefers Namnl
Language
Using ing Koowledge
Koowledge Extraction
USN USN
User Prefers User's Class User Prefers User's Class
Knowledge Prefers Know. Knowledge Prefers Know.

User's Class
Prefers Best 10
Responses

USN

User Prefens
Structured

Text

USN

User's Class

Prefers Know.

Viewing

Figure 3: The GESIA network

Receiving 10
t Responses

User Prefers
Viewing

User Prefers
Best 10
Responses

User's Class

USN

User Prefers




measure how a domain can determine the interface adaptations required. The
USN measurements are applied to the interface information nodes to alter the
final probabilities of the supported states.

These dependencies can also be passed to other interface information nodes.
In Figure 3, functional execution interface information nodes, interface learning
nodes, and uncertainty support nodes all feed dependencies into the communica-
tion mode interface information nodes. Likewise, communication mode interface
information nodes, interface learning nodes, and uncertainty support nodes all
feed dependencies into the output style interface information nodes. Together,
these relations add probabilities as they trace through the network to influence
the final probability of the interface information node being questioned by the
interface.

6 Example of Interface Information Node Query

This example of a simple network demonstrates how the network learns and how
the learned data can be used to create a probability for a possible state. Figure
4 depicts the network used in this example. Notice there is only one IIN, named
»User is Using Graphical Communication” (UGC). There is also the supporting
USN, named ”Uncertainty User is Using Graphical Communication” (UUGC).
Finally, there are two ILNs, named ”User’s Class Prefers Graphical Communica-
tion” (CPGC) and ”User Prefers Graphical Communication” (UPGC). For this
example, let’s say a user, login TOM, has logged onto PESKI through GESIA.
GESIA’s network recovers all the learned data about TOM from storage and
sends the data to the appropriate ILNs and USNs in the network.

With the network loaded, TOM begins to use GESIA. As TOM performs
actions through the interface, the interface records TOM’s behavior by updating
network ILNs and USNs. For example, in Figure 4, if TOM chooses to use
graphical communication from the communication mode menu of the interface,
the interface will update CPGC and UPGC. Thus, TOM’s behavior is captured.

Later, if the interface wants to guess what communication mode TOM will
choose, the interface will query the UGC for the node’s probability. This proba-
bility is calculated by combining the probabilities of CPGC, UPGC, and UUGC.
The probabilities are combined using the following method. First, a truth ta-
ble is constructed that lists all the possible combination of the truthfulness of
CPGC and UPGC. Therefore,

P(UGC=T — CPGC=T, UPGC=T):=1.00,
P(UGC=T — CPGC=T, UPGC=F):=0.65,
P(UGC=T — CPGC=F, UPGC=T):=0.65, and
P(UGC=T — CPGC=F, UPGC=F):=0.00.

Notice if the probabilities that CPGC and UPGC are both true then the
probability of UGC being true is 1.00, and if the probabilities that CPGC and
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Figure 4: A partial network for query example

UPGC are both false then the probability of UGC being true is 0.00. In cases
when the probability of an IIN is not absolute, the uncertainty of the truthfulness
of the IIN must be supported by it’s USN. Once the truth table is constructed,
the probabilities may be combined using Bayes theorem [6] [10] (3] [4]:
P(UGC=T) = P(UGC,CPGC,UPGC)

+ P(UGC,not(CPGC),UPGC)

+ P(UGC,CPGC,not(UPGC))

+ P(UGC,not(CPGC),not(UPGC)).

= (1.00*0.82*0.44) + (0.65%0.18*0.44)
+ (0.65%0.82*0.56) + (0.00%0.18*0.56).

Therefore, UGC-T=0.7108 or 71 percent. Given this result, the user inter-
face has acquired a mathematically sound method for which to capture user
behavior and then convert it into a representation from which the user interface
may reason about future user intent.
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7 Design Problems

While this reasoning architecture enhances the abilities of the user interface to
intelligently adapt to the application domain and the user, there are some short-
falls that must be overcome. These shortfalls revolve around metric collection,
information storage, and metric update control.

Metric collection must be accomplished as sparingly as possible since a metric
must be processed every time it is collected. The collection of too many metrics
t0o often overburdens the tasks the user is trying to perform. As the speed of
processing diminishes, so too does the value of the user interface’s intelligent
adaptations.

Storage of all the user’s probabilities at each of the information nodes is
relatively trivial when only few users employ the expert system. However, as the
expert system gains users or changes users, more records will have to be stored
at each information node. This storage must be managed to avoid overtaking
storage memory resources.

A control algorithm must be in place to handle the possibly constant flow
of metrics that are collected and applied to the interface learning nodes. This
problem is not unlike the process control problem operating systems designers
face [11]. The control algorithm must ensure the interface information nodes
are accessed and updated in a deterministic fashion to ensure accuracy of the
interface’s reasoning.

8 Results and Conclusions

Constructing a reasoning architecture into a user interface in order to facilitate
intelligent interface decision making can be performed using Bayesian networks.
The uncertainty-based principles of Bayesian networks aid in representing the
uncertainty a user interface encounters when assessing what the user needs.
Emphasis on generic expert system user interface design, and the reasoning
architecture behind it, is important to keep generic expert systems generic.

The current implementation of GESIA uses only a few specific metrics to
represent simple information about the application domain and the system’s
users. This basic interface architecture will be enhanced to represent and reason
with more complex structures and ideas. Reasoning will be tied closer to the
natural language interpreter of the user interface, creating a dialogue capability
between the user and the user interface, allowing the user to communicate with
the user interface using more abstract communication.
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